Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PNAS Nexus ; 1(2): pgac067, 2022 May.
Article in English | MEDLINE | ID: covidwho-2222700

ABSTRACT

The new variant of concern (VOC) of SARS-CoV-2, Omicron (B.1.1.529), is genetically very different from other VOCs. We compared Omicron with the preceding VOC Delta (B.1.617.2) and the wildtype (wt) strain (B.1) with respect to their interactions with the antiviral interferon (IFN-alpha/beta) response in infected cells. Our data indicate that IFN induction by Omicron is low and comparable to the wt, whereas Delta showed an increased IFN induction. However, Omicron exceeded both the wt and the Delta strain with respect to the ability to withstand the antiviral state imposed by IFN-alpha.

2.
EMBO Mol Med ; 13(11): e13714, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1471196

ABSTRACT

Risk stratification of COVID-19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe-Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe-Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID-19 patients. We performed a post-mortem examination of infected lung tissue in deceased COVID-19 patients to determine hFwe-Lose's biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe-Lose expression (in nasopharyngeal samples) could accurately predict hospitalization or death in COVID-19 patients. In COVID-19 patients with acute lung injury, hFwe-Lose is highly expressed in the lower respiratory tract and is co-localized to areas of cell death. In patients presenting in the early phase of COVID-19 illness, hFwe-Lose expression accurately predicts subsequent hospitalization or death with positive predictive values of 87.8-100% and a negative predictive value of 64.1-93.2%. hFwe-Lose outperforms conventional inflammatory biomarkers and patient age and comorbidities, with an area under the receiver operating characteristic curve (AUROC) 0.93-0.97 in predicting hospitalization/death. Specifically, this is significantly higher than the prognostic value of combining biomarkers (serum ferritin, D-dimer, C-reactive protein, and neutrophil-lymphocyte ratio), patient age and comorbidities (AUROC of 0.67-0.92). The cell fitness marker, hFwe-Lose, accurately predicts outcomes in COVID-19 patients. This finding demonstrates how tissue fitness pathways dictate the response to infection and disease and their utility in managing the current COVID-19 pandemic.


Subject(s)
COVID-19 , Biomarkers , Flowers , Humans , Pandemics , ROC Curve , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
4.
Front Med (Lausanne) ; 7: 598379, 2020.
Article in English | MEDLINE | ID: covidwho-954188

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS) is associated with high mortality. Lung-protective ventilation is the current standard of care in patients with ARDS, but it might lead to hypercapnia, which is independently associated with worse outcomes. Extracorporeal carbon dioxide removal (ECCO2R) has been proposed as an adjuvant therapy to avoid progression of clinical severity and limit further ventilator-induced lung injury, but its use in COVID-19 has not been described yet. Acute kidney injury requiring renal replacement therapy (RRT) is common among critically ill COVID-19 patients. In centers with available dialysis, low-flow ECCO2R (<500 mL/min) using RRT platforms could be carried out by dialysis specialists and might be an option to efficiently allocate resources during the COVID-19 pandemic for patients with hypercapnia as the main indication. Here, we report the feasibility, safety, and efficacy of ECCO2R using an RRT platform to provide either standalone ECCO2R or ECCO2R combined with RRT in four hypercapnic patients with moderate ARDS. A randomized clinical trial is required to assess the overall benefit and harm. Clinical Trial Registration: ClinicalTrials.gov. Unique identifier: NCT04351906.

5.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-945036

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL